GOC-BF440-S

Bluetooth+WIFI Module Specification

Document	Туре:	Bluetooth+WIFI Module Specification
Document N	lumber:	GOC-BF440-S
Document V	version:	V1.4
Release	Date:	2019/08/19

Mobile:15817435207 Bill

Fax:0755-29658104 TEL: 0755-29663177

Website:www.goodocom.com

Address:305, 3 / F, Xia Gu, Meisheng Huigu Science and Technology Industry Park, 83 Dabao Road, 33 Dis trict, Baoan District, Shenzhen City

Copyright 2006~2019 by GOODOCCOM Technologies SHENZHEN INC., All Right Reserved

Be careful:

1. The module must use ladder steel net, and recommend ladder steel net thickness 0.16--0.20mm. The adaptability of the products is adjusted accordingly.

2. Before the use of the module, bake at 60 degrees centigrade and bake for 12 hours.

Release Record

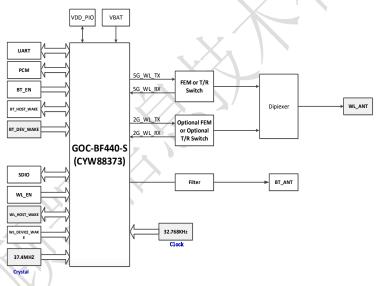
Version Number	Release Date	Comments		
V1.0	2018/08/31	Initial draft		
V1.1	2019/07/03	Increase the power on time sequence Modification PCB Layout Footprint		
V1.2	2019/07/23	Increase packing methods and performance		
		parameters		
V1.3	2019/08/08	Cancel reference design		
V1.4	2019/08/19	Increase module height		
	Y			
		123		

Contents

1. Introduction	
2. Block Diagram	
3. Features	
3.1 WIFI Features	
3.2 Bluetooth Features	
3.3 Standards Compliance	5
4. Specification	
5. Pin diagram and description	7
5.1 Pin diagram	
5.2 Pin Description	
5.3 PCB Layout Footprint	
6. External LPO_CLK Signal Requirement	
7. Echo cancellation principle	
8. Power-Up Sequence and Timing	
8.1 Sequencing of Reset and Regulator Control Signals	
8.2 Power on sequence for WLAN ON and BT ON	
8.3 Power OFF Sequence for WLAN OFF and BT OFF	
8.4 Power On Sequence for WLAN On and BT OFF	
8.5 Power On Sequence for WLAN OFF and BT On	
9. UART Interface	
10. PCM Interface	
11. SDIO Pin Description	
11.1 Signal Connections to SDIO Host	
11.2 SDIO Default Mode Timing Diagram	
11.3 SDIO High Speed Mode Timing Diagram	19
11.4 SDIO Bus Timing Specifications in SDR Modes	
11.5 SDIO Bus Timing Specifications in DDR50 Mode	
12. Electrical Feature	
12.1 Recommended Operating Rating	
12.2 Recommended Operating Conditions	
13. Recommended Reflow Profile.	
14. PCB Layout Recommendation	
14.1 Antenna	
14.2 HCI UART Lines Layout Guideline	
14.3 PCM Lines Layout Guideline	
14.4 Power Trace Lines Layout Guideline	
14.5 Ground Lines Layout Guideline	
15. Module Part Number Description	
16. Ordering Information	
17. Packaging Information	
17.1 Net Weight	
17.2 Package	
17.3 Storage Requirements	
17.4 Humidity Sensitive Characteristic	

1. Introduction

The GOC-BF440-S device provides the highest level of integration for Automotive IoT wireless systems with integrated single-stream IEEE 802.11a/b/g/n/ac MAC/baseband/radio and Bluetooth 5.0 (Basic Rate, Enhanced Data Rate and Bluetooth Low Energy).


The GOC-BF440-S brings the latest mobile connectivity technology for Automotive Infotainment, Telematics and rear-seat Entertainment. It also offers Automotive Grade 3 (-40 °C to +85 °C) temperature performance.

GOC-BF440-S supports all rates specified in the IEEE 802.11 a/b/g/n/ac specifications. IEEE 802.11ac's 256 QAM is supported for MCS8 in 20 MHz channels and MCS8/MCS9 in 40 MHz & 80 MHz channels to enable data rates of up to 433.3 Mbps. Included on-chip are 2.4 GHz and 5 GHz power amplifiers and low-noise amplifiers. Optional external PAs and LNAs are also supported.

The WLAN section supports the following host interface options: an SDIO v3.0 interface that can operate in 4 b or 1 b mode. The Bluetooth section supports high-speed 4-wire UART interface.

The GOC-BF440-S implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms, which ensure that WLAN and Bluetooth collaboration is optimized for maximum performance. In addition, coexistence support for external radios (such as LTE cellular) is provided via an external interface.

2. Block Diagram

Figure 1: GOC-BF440-S system Block Diagram

3.Features

3.1 WIFI Features

IEEE 802.11ac compliant.

- Support for MCS8 VHT20 in 20 MHz channels for up to 86.7Mbps data.
- Single-stream spatial multiplexing up to 433.3 Mbps data rate.
- Supports 20, 40, and 80 MHz channels with optional SGI (256 QAM modulation).
- Full IEEE 802.11a/b/g/n legacy compatibility with enhanced performance.
- TX and RX low-density parity check (LDPC) support for improved range and power efficiency.
- On-chip power amplifiers and low-noise amplifiers for both bands.
- Support for optional front-end modules (FEM) with external PAs and LNAs.

■ Supports integrated T/R switch for 2.4 GHz band.

• Supports RF front-end architecture with a single dual-band antenna shared between Bluetooth and WLAN for lowest system cost.

■ Shared Bluetooth and WLAN receive signal path eliminates the need for an external power splitter while maintaining excellent sensitivity for both Bluetooth and WLAN.

■ Supports IEEE 802.15.2 external coexistence interface to optimize bandwidth utilization with other colocated wireless technologies such as LTE.

3.2 Bluetooth Features

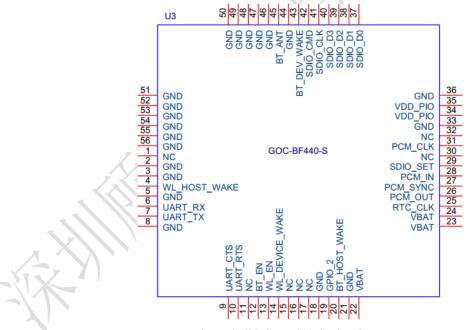
- Bluetooth 5.0 qualified with all errata (applicable to v4.2 and earlier) fixed as well as all support for all optional Bluetooth 4.2 features
- Fully supports Bluetooth Core Specification version 5.0 + EDR features:
 - Adaptive frequency hopping (AFH)
 - Quality of service (QoS)
 - Extended synchronous connections (eSCO)—voice connections
 - Fast connect (interlaced page and inquiry scans)
 - Secure simple pairing (SSP)
 - ➢ Sniff subrating (SSR)
 - Encryption pause resume (EPR)
 - Extended inquiry response (EIR)
 - Link supervision timeout (LST)
- UART baud rates up to 4 Mbps
- Supports all Bluetooth 5.0 + HS packet types
- Supports maximum Bluetooth data rates over HCI UART
 - Multipoint operation with up to seven active slaves
 - Maximum of seven simultaneous active ACL links
 - > Maximum of three simultaneous active SCO and eSCO connections with scatternet support
- Trigger Cypress fast connect (TCFC)
- Narrow band and wide band packet loss concealment
- Scatternet operation with up to four active piconets with background scan and support for scatter mode
- High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and BT_HOST_WAKE signaling
- Channel quality driven data rate and packet type selection
- Standard Bluetooth test modes
- Extended radio and production test mode features

3.3 Standards Compliance

- Bluetooth
 - \blacktriangleright Bluetooth 2.1 + EDR
 - ➢ Bluetooth 3.0
 - ▶ Bluetooth 4.2 Bluetooth Low Energy
 - ➢ Bluetooth 5.0
- IEEE 802.11 WLAN
 - ▶ IEEE 802.11ac Enhancements for Very High Throughput for Operation in Bands below 6 GHz
 - ▶ IEEE 802.11n Enhancements for Higher Throughput
 - ▶ IEEE 802.11a High-speed Physical Layer in the 5 GHz Band
 - ▶ IEEE 802.11b Higher-Speed Physical Layer Extension in the 2.4 GHz Band
 - ➤ IEEE 802.11g Further Higher Data Rate Extension in the 2.4 GHz Band

- > IEEE 802.11d Specification for operation in additional regulatory domains
- ➤ IEEE 802.11r Fast Basic Service Set (BSS) Transition
- ➢ IEEE 802.11w Protected Management Frames
- > IEEE 802.11e Medium Access Control (MAC) Quality of Service Enhancements
- > IEEE 802.11h Spectrum and Transmit Power Management Extensions in the 5 GHz band
- > IEEE 802.11i Medium Access Control (MAC) Security Enhancements
- ➤ IEEE 802.11k Radio Resource Measurement of Wireless LANs
- IEEE 802.15.2 Coexistence Compliance (on-silicon solution compliant with IEEE 3-wire requirements)
- WLAN Security:
 - ≻ WEP
 - ➢ WPA-Personal
 - ➢ WPA2-Personal
 - AES (hardware accelerator)
 - > TKIP (hardware accelerator)
- Wi-Fi Multimedia:
 - ≻ WMM
 - ➤ Wi-Fi Multimedia PowerSave (WMM-PS with U-APSD)
 - ➢ WMM-Sequential Access (WMM-SA with PCF)

4. Specification


Feature	Description
Model Name	GOC-BF440-S
Bluetooth	
Bluetooth Standard	Bluetooth V5.0
Frequency Band	2402MHz~2480MHz
Interface	UART/PCM
WIFI	
Frequency Band	2.4GHz/5GHz
Interface	SDIO 3.0
	IEEE 802.11b:BPSK-1M@-13 dB QPSK-11M @-13dB
	IEEE 802.11g: BPSK-6M@-5 dB 64QAM -54M@-25dB
7	IEEE 802.11n: BPSK- MCS0@-5 dB 64QAM -MCS7@-28dB
EVM	IEEE 802.11a: BPSK-6M@-5dB 64QAM -54M@-25dB
	IEEE 802.11n: BPSK-MCS0@-5dB 64QAM - MCS7@-28dB
	IEEE 802.11ac: BPSK-MCS0@-5dB 256QAM – MCS8@-30dB
	256QAM – MCS9@-32dB
	802.11b:11M/-88dBm@<8%PER
	802.11g:54M/-75dBm@<10%PER
	802.11n:HT20-MCS7/-73dBm@<10%PER
	802.11a:54M/-72dBm@<10%PER
Sensitivity@PER	802.11n:HT20-MCS7/-70dBm@<10%PER HT40M- MCS7/-
-	67dBm@<10%PER
	802.11ac: HT20 MCS9/-64dBm@<10%PER HT40M-MCS9/-
	61dBm@<10%PER
1	(Tolerance:+/-1dB)

RF Power	802.11b/11M: 17dBm+/-1dBm 802.11g/54M: 16dBm+/-1dBm 802.11n/HT 20- MCS7: 14dBm+/-1dBm 802.11a/54M: 15dBm+/-1dBm 802.11n/HT20-MCS7: 13dBm+/-1dBm 802.11ac/VH20-MCS7: 13dBm+/-1dBm 802.11ac/VH40-MCS8: 12dBm+/-1dBm 802.11ac/VH80-MCS9: 11dBm+/-1dBm
Working Current	250 mA ~300mA
Peak Current	500 mA ~650mA
Size	17mm*17mm*2.4mm
Operating temperature	-40°C~+85°C
Storage temperature	-40°C~+125°C
VBAT	3.3V
VDD_PIO	1.8V/3.3V
Humidity	Operating Humidity 10% to 95% Non-Condensing

 Table 1: Main Specifications

5. Pin diagram and description

5.1 Pin diagram

Figure2:GOC-BF440-S Pin diagram

5.2 Pin Description

	Pin Name	Туре	Description
1	NC	NC	NC
2	GND	GND	Ground

3	GND	GND	Ground	
4	WL_HOST_WAKE	Input/Output	Wlan host wake-up: Signal from the module to the host indicating that the module requires attention.	
5	GND	GND	Ground	
6	UART_RX	Input	UART serial input	
7	UART_TX	Output	UART serial output	
8	GND	GND	Ground	
9	UART_CTS	Input	UART clear-to-send	
10	UART_RTS	Output	UART request-to-send	
11	NC	NC	NC	
12	BT_EN	Input	BT enable	
13	WL_EN	Input	WL enable	
14	WL_DEVICE_WAKE	Input/Output	Wan device wake-up: Signal from the host to the module indicating that the host requires attention.	
15	NC	NC	NC	
16	NC	NC	NC	
17	NC	NC	NC	
18	GND	GND	Ground	
19	GPIO_2	Input/Output	GPIO_2	
20	BT_HOST_WAKE	Input/Output	BT host wake-up: Signal from the module to the host indicating that the module requires attention.	
21	GND	GND	Ground	
22	VBAT	POWER	3.3V Supply Voltage	
23	VBAT	POWER	3.3V Supply Voltage	
24	VBAT	POWER	3.3V Supply Voltage	
25	RTC_CLK	Input	External sleep clock input (32.768 kHz)	
26	PCM_OUT	Output	PCM data output	
27	PCM_SYNC	Input/Output	PCM sync	
28	PCM_IN	Input	PCM data input	
29	SDIO_SET	Input	SDIO mode selection	
30	NC	NC	NC	
31	PCM_CLK	Input/Output	PCM or SLIMbus clock	
32	NC	NC	NC	
33	GND	GND	Ground	
34	VDD_PIO	POWER	1.8V or 3.3V Supply Voltage	
35	VDD_PIO	POWER	1.8V or 3.3V Supply Voltage	
36	GND	GND	Ground	
37	SDIO_DATA0	Input/Output	SDIO Data Line 0	
38	SDIO_DATA1	Input/Output	SDIO Data Line1	
30		· ·	SDIO Data Line 2	
39	SDIO_DATA2	Input/Output	SDIO Data Line 2	
	SDIO_DATA2 SDIO_DATA3	Input/Output Input/Output	SDIO Data Line 2 SDIO Data Line 3	

42	SDIO_CMD	Input/Output	SDIO Command
43	BT_DEV_WAKE	Input/Output	BT device wake-up: Signal from the host to the module indicating that the host requires attention.
44	GND	GND	Ground
45	BT_ANT	RF	Bluetooth Antenna
46	GND	GND	Ground
47	GND	GND	Ground
48	GND	GND	Ground
49	GND	GND	Ground
50	GND	GND	Ground
51	GND	GND	Ground
52	GND	GND	Ground
53	GND	GND	Ground
54	GND	GND	Ground
55	GND	GND	Ground
56	GND	GND	Ground

Table2:Pin Description

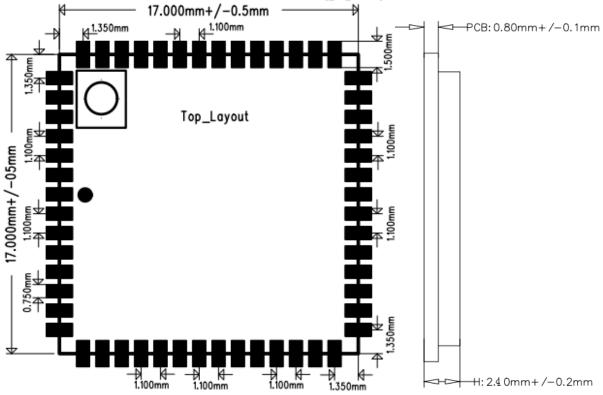


Figure3: PCB Layout Footprint

LPO Clock Parameter Units Nominal input frequency 32.768 kHz Frequency accuracy +200ppm Duty cycle 30-70 % Input signal amplitude 200-3300 mV, p-p Signal type Square wave or sine wave >100k Ω Input impedancel¹ <5 pF <10,000 Clock jitter (during initial start-up) ppm

6.External LPO_CLK Signal Requirement

1. When power is applied or switched off.

7. Echo cancellation principle

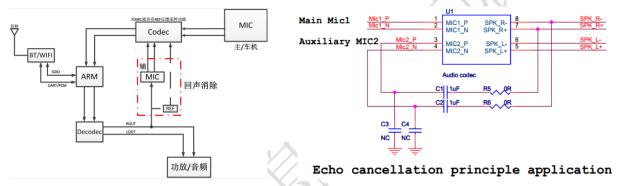


Figure5: Sound processing flow chart

The left picture is a schematic diagram of the echo cancellation principle. After Decodec decoding of the left and right channel sound, after data sampling and master MIC data comparison, echo cancellation can be processed. The right picture is a reference example, which can be designed according to the actual plan. Flying echo cancellation design, priority to use the echo cancellation design of IFLYTEK.

8. Power-Up Sequence and Timing

8.1 Sequencing of Reset and Regulator Control Signals

The GOC-BF440-S has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable. NOTE:

1)The module has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO accesses.

2)VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

8.2 Power on sequence for WLAN ON and BT ON

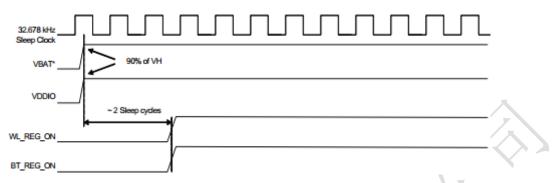


Figure 6: WLAN = ON, Bluetooth = ON

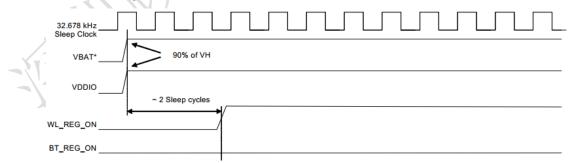
Notes:

1. VBAT should not rise 10%–90% faster than 40 microseconds.

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

8.3 Power OFF Sequence for WLAN OFF and BT OFF

32.678 kHz Sleep Clock VBAT* /	
WL_REG_ON	
BT_REG_ON	
	Figure 7: WI AN $-$ OFF Plustooth $-$ OFF


Figure 7: WLAN = OFF, Bluetooth = OFF

Notes:

1. VBAT should not rise 10%–90% faster than 40 microseconds.

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

8.4 Power On Sequence for WLAN On and BT OFF

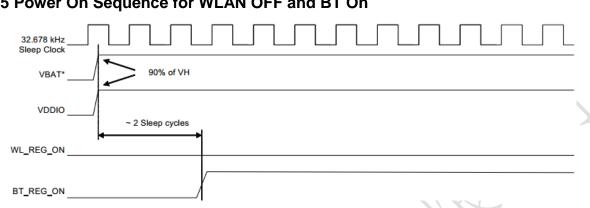


Figure 8: WLAN = ON, Bluetooth = OFF

Notes:

1. VBAT should not rise 10%–90% faster than 40 microseconds.

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

8.5 Power On Sequence for WLAN OFF and BT On

Figure 9: WLAN = OFF, Bluetooth = ON

Notes:

1. VBAT should not rise 10%–90% faster than 40 microseconds.

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

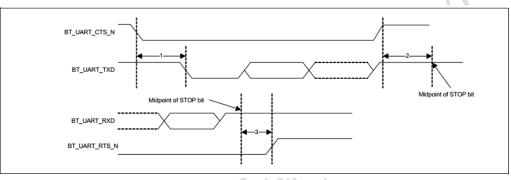
9. UART Interface

The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.

UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.1 UART HCI specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.

The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification (Threewire UART Transport Layer). Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.

The GOC-BF440-S UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.


Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The GOC-BF440-S UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within $\pm 2\%$.

Desired Rate	Actual Rate	Error (%)
4000000	4000000	0.00
3692000	3692308	0.01
3000000	3000000	0.00
2000000	2000000	0.00
1500000	1500000	0.00
144444	1454544	0.70
921600	923077	0.16

460800	461538	0.16
230400	230796	0.10
115200	115385	0.16
57600	57692	0.16
38400	38400	0.00
28800	28846	0.16
19200	19200	0.00
14400	14423	0.16
9600	9600	0.00

Table4:Example of Common Baud Rate

UART Timing

UART Timing Specifications

Ref	Characteristics	Min	Тур	Max	Unit
1	Delay time, BT_UART_CTS_N low to BT_UART_TXD valid	-		1.5	Bit periods
2	Setup time, BT_UART_CTS_N high before midpoint of stop bit	_	_	0.5	Bit periods
3	Delay time, midpoint of stop bit to BT_UART_RTS_N high	_	_	0.5	Bit periods

10. PCM Interface

The PCM Interface on the GOC-BF440-S can connect to linear PCM Codec devices in master or slave mode. In master mode, the GOC-BF440-S generates the PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided by another master on the PCM interface and are inputs to the GOC-BF440-S.

The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI commands.

Slot Mapping

The GOC-BF440-S supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM interface. These three channels are time-multiplexed onto the single PCM interface by using a timeslotting scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or 1024 kHz. The corresponding number of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to allow other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the PCM clock during the last bit of the slot.

Frame Synchronization

The GOC-BF440-S supports both short- and long-frame synchronization in both master and slave modes. In shortframe synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first bit of the first slot.

Data Formatting

The GOC-BF440-S may be configured to generate and accept several different data formats. For conventional narrowband speech mode, the GOC-BF440-S uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The default format is 13-bit 2's complement data, left justified, and clocked MSB first.

PCM Interface Timing

PCM_BCLK PCM_BCLK PCM_SYNC PCM_OUT S PCM_OUT S PCM_IN PCM_IN

Short Frame Sync, Master Mode

Figure 10:PCM Timing Diagram (Short Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	-	12	MHz
2	PCM bit clock LOW	41	-	-	ns
3	PCM bit clock HIGH	41	-	-	ns
4	PCM_SYNC delay	0	-	25	ns
5	PCM_OUT delay	0	-	25	ns
6	PCM_IN setup	8	-	-	ns
7	PCM_IN hold	8	-	-	ns
8	Delay from rising edge of	0	-	25	ns
	PCM_BCLK during last bit				
	period to PCM_OUT becoming				
	high impedance				

Table5:PCM Interface Timing Specifications (Short Frame Sync, Master Mode)

Short Frame Sync, Slave Mode

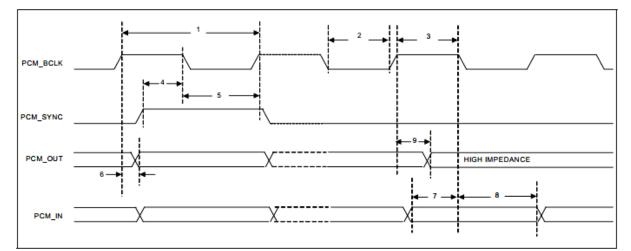
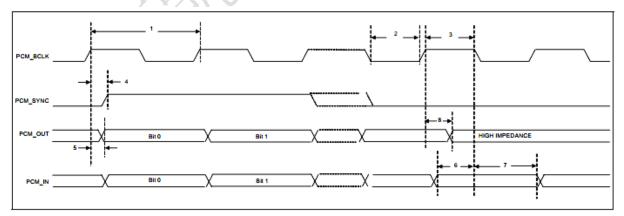


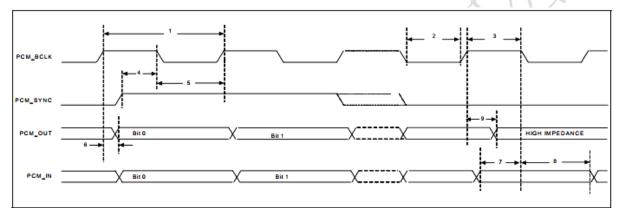
Figure11:PCM Timing Diagram (Short Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-		12	MHz
2	PCM bit clock LOW	41		N	ns
3	PCM bit clock HIGH	41	-	-	ns
4	PCM_SYNC setup	8	-	-	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	0	-	25	ns
7	PCM_IN setup	8	-	-	ns
8	PCM_IN hold	8	-	-	ns
9	Delay from rising edge of	0	-	25	ns
	PCM_BCLK during last bit				
	period to PCM_OUT becoming				
	high impedance				

Table6: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)

Long Frame Sync, Master Mode




Figure12: PCM Timing Diagram (Long Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	-	12	MHz

2	PCM bit clock LOW	41	-	-	ns
3	PCM bit clock HIGH	41	-	-	ns
4	PCM_SYNC delay	0	-	25	ns
5	PCM_OUT delay	0	-	25	ns
6	PCM_IN setup	8	-	-	ns
7	PCM_IN hold	8	-	-	ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0	-	25	ns

 Table7: PCM Interface Timing Specifications (Long Frame Sync, Master Mode)

Long Frame Sync, Slave Mode

Figure 13: PCM Timing Diagram (Long Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	-	12	MHz
2	PCM bit clock LOW	41	-	-	ns
3	PCM bit clock HIGH	41	-	-	ns
4	PCM_SYNC setup	8	-	-	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	0	-	25	ns
7	PCM_IN setup	8	-	-	ns
8	PCM_IN hold	8	-	-	ns
9	Delay from rising edge of	0	-	25	ns
- X	PCM_BCLK during last bit				
	period to PCM_OUT becoming				
	high impedance				

Table8: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)

Short Frame Sync, Burst Mode

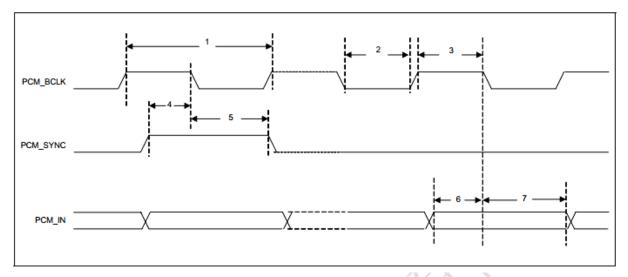
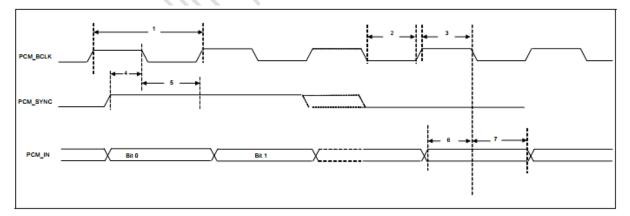



Figure14: PCM Burst Mode Timing (Receive Only, Short Frame Sync)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	Y	24	MHz
2	PCM bit clock LOW	20.8	-	-	ns
3	PCM bit clock HIGH	20.8	-	-	ns
4	PCM_SYNC setup	8	-	-	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	8	-	-	ns
7	PCM_IN setup	8	-	-	ns
8	PCM_IN hold	8	-	-	ns

Table9: PCM Burst Mode (Receive Only, Short Frame Sync)

Long Frame Sync, Burst Mode

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	-	24	MHz
2	PCM bit clock LOW	20.8	-	-	ns

3	PCM bit clock HIGH	20.8	-	-	ns
4	PCM_SYNC setup	8	-	-	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	8	-	-	ns
7	PCM_IN setup	8	-	-	ns
8	PCM_IN hold	8	-	-	ns

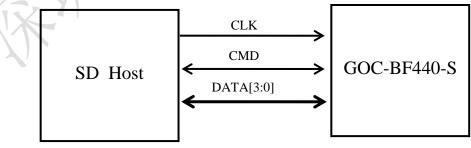
Table10: PCM Burst Mode (Receive Only, Long Frame Sync)

11.SDIO Pin Description

All three package options of the WLAN section provide support for SDIO version 3.0 including the new UHS-I modes:

- DS: Default speed up to 25MHz (3.3V signaling).
- HS: High speed up to 50MH (1.8V signaling).
- SDR12: SDR up to 25MHz (1.8V signaling).
- SDR25: SDR up to 50MHz (1.8V signaling).
- SDR50: SDR up to 100MHz (1.8V signaling).
- SDR104: SDR up to 208MHz (1.8V signaling).
- DDR50: DDR up to 50MHz (1.8V signaling).

The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an interrupt different from the one provided by SDIO interface. The ability to force control of gated clocks from within the device is also provided.

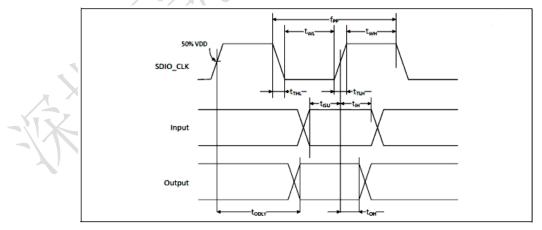

The following three functions are supported:

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B).

SDIO Pin Description:

		SD 4-Bit Mode
	DATA0	Data Line 0
	DATA1	Data Line 1 or interrupt
\checkmark	DATA2	Data Line 2 or Read Wait
R	DATA3	Data Line 3
0	-CLK	Clock
Ś	CMD	Command Line

11.1 Signal Connections to SDIO Host

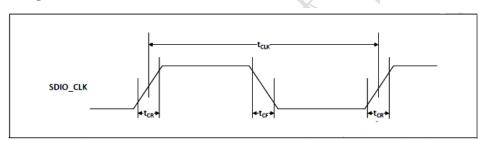

Figure 16:Signal Connections to SDIO Host

11.2 SDIO Default Mode Timing Diagram

SDIO_CLK					
			topur.	/\	
	(max)		(min)		
Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are referred to minimu	m VIH and ma	ximum VIL ^b)			
requency – Data Transfer mode	fPP	0	-	25	MHz
requency – Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	10	-	-	ns
Clock high time	tWH	10	-	-	ns
Clock rise time	tTLH	-	-	10	ns
Clock low time	tTHL	-	-	10	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	5	-	-	ns
nput hold time	tIH	5	-	-	nș
Outputs: CMD, DAT (referenced to CLK)					
Output delay time – Data Transfer mode	tODLY	0	-	14	ns
Output delay time – Identification mode	tODLY	0	-	50	ns

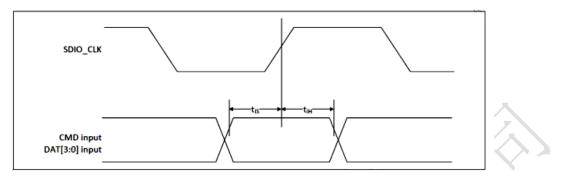
a. Timing is based on CL \leq 40pF load on CMD and Data. b. min(Vih) = 0.7 \times VDDIO and max(Vil) = 0.2 \times VDDIO.

11.3 SDIO High Speed Mode Timing Diagram


SDIO CLK (all values are referred to minimum VIH and maximum VIL ^b) Frequency – Data Transfer Mode fPP 0 - 50 MHz Frequency – Identification Mode fOD 0 - 400 kHz Clock low time tWL 7 - - ns Clock high time tWH 7 - - ns Clock rise time tTLH - - 3 ns
Frequency – Identification ModefOD0-400kHzClock low timetWL7nsClock high timetWH7nsClock rise timetTLH3ns
Clock low timetWL7nsClock high timetWH7nsClock rise timetTLH3ns
Clock high timetWH7nsClock rise timetTLH3ns
Clock rise time tTLH 3 ns
Clock low time tTHL – – 3 ns
Inputs: CMD, DAT (referenced to CLK)
Input setup Time tISU 6 – – ns
Input hold Time tIH 2 ns
Outputs: CMD, DAT (referenced to CLK)
Output delay time – Data Transfer Mode tODLY – – 14 ns
Output hold time tOH 2.5 ns
Total system capacitance (each line) CL 40 pF

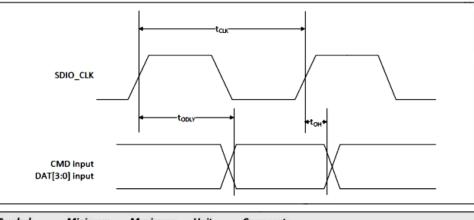
a. Timing is based on CL ≤ 40 pF load on CMD and Data.

b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.


11.4 SDIO Bus Timing Specifications in SDR Modes

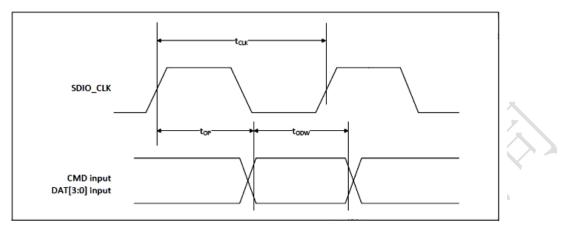
Clock timing (SDR Modes)

Parameter	Symbol	Minimum	Maximum	Unit	Comments
-	t _{CLK}	40	-	ns	SDR12 mode
		20	-	ns	SDR25 mode
		10		ns	SDR50 mode
		4.8	-	ns	SDR104 mode
-	t _{CR} , t _{CF}	-	0.2 × t _{clk}	ns	t _{CR} , t _{CF} < 2.00 ns (max) @100 MHz, C _{CARD} = 10 pF
					t _{CR} , t _{CF} < 0.96 ns (max) @208 MHz, C _{CARD} = 10 pF
Clock duty	-	30	70	%	-


Card Input timing (SDR Modes)

1.70 ^a				
1.70 ^a				
	-	ns	C _{CARD} = 10 pF, VCT = 0.975V	
0.80	-	ns	C _{CARD} = 5 pF, VCT = 0.975V	
3.00	-	ns	C _{CARD} = 10 pF, VCT = 0.975V	
0.80	-	ns	C _{CARD} = 5 pF, VCT = 0.975V	
	3.00	3.00 -	3.00 – ns	0.80 – ns C _{CARD} = 5 pF, VCT = 0.975V 3.00 – ns C _{CARD} = 10 pF, VCT = 0.975V

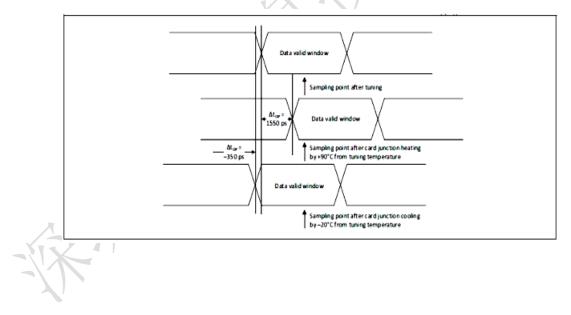
a. SDIO 3.0 specification value is 1.40 ns.


Card output timing (SDR Modes up to 100MHz)

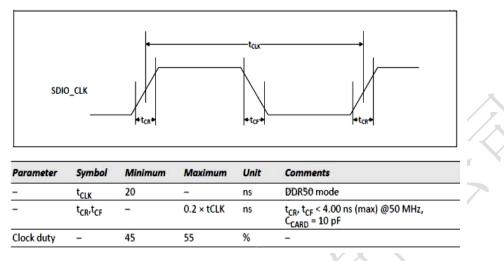
Symbol	Minimum	Maximum	Unit	Comments
tODLY	-	7.85ª	ns	$t_{CLK} \ge 10 \text{ ns } C_L = 30 \text{ pF using driver type B for SDR50}$
tODLY	-	14.0	ns	$t_{CLK} \ge 20 \text{ ns } C_L = 40 \text{ pF using for SDR12, SDR25}$
t _{OH}	1.5	-	ns	Hold time at the t _{ODLY} (min) C _L = 15 pF

a. SDIO 3.0 specification value is 7.5 ns.

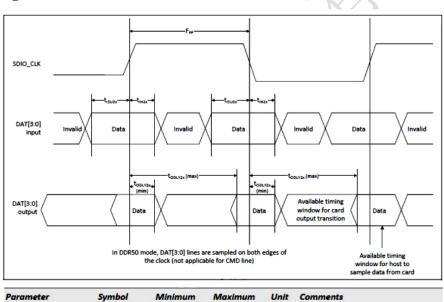
Card output timing (SDR Modes 100MHz to 208MHz)


Symbol	Minimum	Maximum	Unit	Comments
t _{OP}	0	2	UI	Card output phase
∆t _{OP}	-350	+1550	ps	Delay variation due to temp change after tuning
topw	0.60	-	UI.	t _{DDW} =2.88 ns @208 MHz

+ Δt_{OP} = +1550 ps for junction temperature of Δt_{OP} = 90 degrees during operation


• $\Delta t_{OP} = -350$ ps for junction temperature of $\Delta t_{OP} = -20$ degrees during operation

• Δt_{OP} = +2600 ps for junction temperature of Δt_{OP} = -20 to +125 degrees during operation


△*tOP* Consideration for Variable Data Window (SDR 104 Mode)

11.5 SDIO Bus Timing Specifications in DDR50 Mode

Data Timing

	A REAL PROPERTY AND A REAL				
Input CMD					
Input setup time	t _{ISU}	6	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH}	0.8	-	ns	C _{CARD} < 10pF (1 Card)
Output CMD					
Output delay time	tODLY	-	13.7	ns	C _{CARD} < 30pF (1 Card)
Output hold time	toH	1.5	-	ns	C _{CARD} < 15pF (1 Card)
Input DAT					
Input setup time	t _{ISU2x}	3	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH2x}	0.8	-	ns	C _{CARD} < 10pF (1 Card)
Output DAT					
Output delay time	t _{ODLY2x}	-	7.85 ^a	ns	C _{CARD} < 25pF (1 Card)
Output hold time	t _{ODLY2x}	1.5	-	ns	C _{CARD} < 15pF (1 Card)

a. SDIO 3.0 specification value is 7.0 ns.

12.Electrical Feature

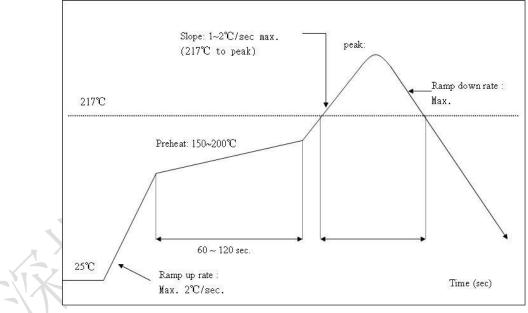
12.1 Recommended Operating Rating

Rated Level	Min	Typical	Max	Remark
VBAT	3.13V	3.3V	4.8V	/
VDD PIO	3.13V	3.3V	3.47V	/
	1.71V	1.8V	1.89V	/ 入

Table 11: Recommended Operating Rating

12.2 Recommended Operating Conditions

Working Condition	Min	Typical	Max
Temperature Range	-40 °C		+85 °C
Storage Temperature	-40 °C		+125 ℃


Table 12: Recommended Operating Conditions

13. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : $\leq 260^{\circ}$ C

Number of Times : 2 times

Figure17 :Solder Reflow Profile

14.PCB Layout Recommendation

14.1 Antenna

Antenna trace impedance should be adjusted to 50ohm. The area above(or under) the RF antenna trace should be free from other traces.

14.2 HCI UART Lines Layout Guideline

The following HCI line routing must obey the following rule to prevent overshoot/undershoot, as these lines drive $4 \sim 8mA$

UART_RX UART_TX UART_CTS UART_RTS

The route length of these signals be less than 15 cm and the line impedance be less than 50Ω .

14.3 PCM Lines Layout Guideline

The following HCI line routing must obey the following rule to prevent overshoot/undershoot, as these lines drive 4 mA

PCM_SYNC PCM_CLK PCM_OUT PCM_IN The route length of these signals be less than 15 cm and the line impedance be less than 50Ω .

14.4 Power Trace Lines Layout Guideline

-VBAT Trace Width: 20mil

14.5 Ground Lines Layout Guideline

- A Complete Ground in Ground Layer.
- Add Ground Through Holes to GOC-BF440-S Module Ground Pads
- Decoupling Capacitors close to GOC-BF440-S Module Power and Ground Pads

15. Module Part Number Description

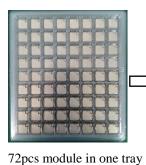
	<u>GOC-BF 44 0 - S</u>
Company Name	
The chip code	
Package	
Reserved space ——— WIFI Interface ———	

Figure18: Module Part Number Description

For a list of available options (e.g. package, packing) and orderable part numbers or for further information on any aspect of this device, please go to *www.goodocom.com* or contact the GOODOCOM Sales Office nearest to you.

16.Ordering Information

Part Number	Description	Remark
GOC-BF440-S	Bluetooth+WIFI Module	


Table 13: Ordering information


17.Packaging Information

17.1 Net Weight

The module net weight: $1.3g \pm 0.1g$

17.2 Package

2000pcs modules into one pack

Modules One Box

Tray size:225mm*205mm*7mm

17.3. Storage Requirements

- 1) Temperature: 22~28 ℃;
- 2) Humidity: <70% (RH);

Vacuum packed and sealed in good condition to ensure 12 months of welding.

17.4. Humidity Sensitive Characteristic

1) MSL: 3 level

2) Once opened, SMT within 168 hours in the condition of temperature: $22 \sim 28$ °C and humidity<60% (RH).

3) Handling, storage, and processing should follow IPC/JEDECJ-STD-033

Carton size:270mm*275mm*220mm

4000pcs